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(Lamsade)
Paris Dauphine University

Campione d’Italia, 7-12/09/2014



Bianzino, A. P., Chaudet, C., Rossi, D., Rougier, J. L., Moretti, S.
(2011). The green-game: striking a balance between QoS and
energy saving. In Proceedings of the 23rd International Teletraffic
Congress (pp. 262-269).

Bianzino, A. P., Chaudet, C., Moretti, S., Rougier, J., Chiaraviglio,
L., Le Rouzic, E. (2012). Enabling sleep mode in backbone
IP-networks: A criticality-driven tradeoff. In: 2012 IEEE
International Conference on Communications (ICC) (pp.
5946-5950).

Bianzino, A. P., Rougier, J. L., Chaudet, C., Rossi, D. (2013). The
green-game: Accounting for device criticality in resource
consolidation for backbone ip networks. Strategic Behavior and the
Environment.



Preface on centrality measures

In network analysis, centrality refers to measures of “importance”
of vertices within a graph (e.g. aimed at identifying the most
influential persons in a social network, the key proteins in a
biological network, the most critical infrastructure nodes in the
Internet, etc.)

Differently stated, centrality measures may help to understand at
which extent the failure of a node could impact a system
(network), determining the collapse or the malfunctioning of the
entire system.



Basic graph theory notations
An (undirected) graph or network is a pair 〈N,E 〉, where N is a
finite set of vertices or nodes and E is a set of edges e of the form
{i , j} with i , j ∈ N, i 6= j .

A path between nodes i and j in a graph 〈N,E 〉 is a finite
sequence of different nodes (i0, i1, . . . , ik), where i = i0 and
j = ik , k ≥ 1, such that {is , is+1} ∈ E for each s ∈ {0, ..., k − 1}
and such that all these edges are distinct.

For each non-empty coalition S ⊆ N, we call the graph 〈S ,ES〉
such that ES ⊆ E and e ⊆ S for each e ∈ ES , the restriction of
〈N,E 〉 to S . If all pairs of nodes in 〈S ,ES〉 are connected, we say
that coalition S is a connected component in ES .

The length l(i , j) of a path between i and j in a graph 〈V ,E 〉 is
the number of edges in the path and a shortest path between i
and j in a graph 〈N,E 〉 is a path between i and j with minimum
length, denoted by d(i , j).



Centrality properties

If we have no further information about the interaction among the
vertices of the graph (otehr than the graph itself) one could
impose for a measure of centrality the following desiderata [8]:
d .1) a measure of centrality should not depend on the name of
the nodes;
d .2) The centrality of a node in a disconnected graph should
coincide with the centrality of that node in the connected
component to which it belongs;
d .3) isolated nodes should have minimal centrality;
d .4) If 〈V ,E 〉 is a chain, centrality should increase from the end
node to the median node;
d .5) of all connected graphs with n nodes, the minimal centrality
should be attained by the end nodes in a chain;
d .6) of all graphs with n nodes, the maximal centrality should be
attained by the hub of a star;
d .7) Removing an edge should decrease (or at least, not increase)
the centrality of both nodes incident on that edge.



Classical centrality measures

Different measures of centrality for nodes in a network have been
proposed in the literature [2, 5, 7, 10, 11]:

- degree centrality deg(i) [10] of a node i ∈ V in a graph 〈V ,E 〉
is defined as the number of edges in e ∈ E such that i ∈ e.

- betweenness centrality [7]: let i , j , k ∈ V and let ni ,j be the
number of shortest between i and j and let ni ,j(k) be the number
of shortest paths formed which contain node k. The rate of
communication between i and j that can be monitored by an
interior node k is denoted by δi ,j(k) = ni ,j(k)/ni ,j . If no shortest
path between i and j exists δi ,j(k) = 0 by definition. The
betweenness centrality of k is defined as

∑
i ,j∈V ,i 6=j ,i 6=k,j 6=k δi ,j(k).



- Closeness centrality [2] of a node i ∈ V is defined as the inverse
of the average length of the shortest paths from i to all the other
nodes in the graph, that is |V |−1∑

j∈V ,j 6=i d(i ,j) , and it measures the

extent to which node i is close to all the other nodes in the graph.

- eigenvector centrality [5] of node i is defined as the i-th
element of the principal eigenvector (which is the eigenvector
corresponding to the principal, i.e. largest, eigenvalue) of the
adjacency matrix of the graph. This principal eigenvector is
normalized such that its largest entry is 1, and it measures how a
node is well connected to other highly connected nodes.



An example: the four measures of centrality introduced
above
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Nodes 1 2 3 4

degree 1 3 2 2

betweenness 0 2 0 0

closeness 3
5 1 3

4
3
4

eigenvector 0.46 1 0.85 0.85



- Classical centrality measures are quite appropriate to compute
the importance of nodes in situations where it is justified to make
the assumption that nodes failures occur independently.

- Another strong assumption that justifies the use of classical
centrality measures is that the consequence of the failure of each
node in the system is important (for, instance it determines the
collapse of the system) and it is the same for all nodes: a
situations where a system is sensible to the failure of connected
components with more than one node is not considered.

- On the contrary, in many real-world networks, assuming that the
actions of the agents on the nodes are independent is not realistic
at all. Similarly, the consequences of an action on the system could
be appreciated only if a consistent number of possibly connected
agents take the same action.



Coalitional games: pros and cons

Coalitional games allow for a richer description of agents
relationships in a network, where it is quite realistic to figure out
the mutual influence of nodes in producing a certain outcome.

Even if coalitional games substantially contribute to a more
realistic and complete description of a system, one could object
that their use determines a drastic increasing of the complexity of
the analysis. In fact, the evaluation of the worth of 2|N| − 1
coalitions, and their successive use for the calculations of solutions,
makes the application of coalitional games very hard.

However, several studies have shown the effective possibility of
applying these models to real-world networks. In these approaches,
the problem of the representation of the strength of coalitions is
overcome by a concise closed-form of the characteristic function
and/or approximation methods for solutions.



Basic definitions on coalitional games

A coalitional game, also known as characteristic-form game or
Transferable Utility (TU) game, is a pair (N, v), where N denotes
a finite set of players and v is the characteristic function, assigning
to each S ⊆ N, a real number v(S) ∈ R, with v(∅) = 0 by
convention. If the set N of players is fixed, we identify a coalitional
game (N, v) with the corresponding characteristic function v .



The Shapley value
- We define the set ΣN of possible linear orders on the set N as the
set of all bijections σ : N → N, where σ(i) = j means that with
respect to σ, player j is in the i-th position. Let (N, v) be a
coalitional game with N as the set of players.

For σ ∈ ΣN , the marginal vector mσ(v) is defined by

mσ
i (v) = v([i , σ])− v((i , σ)) for all i ∈ N,

where [i , σ] = {j ∈ N : σ−1(j) ≤ σ−1(i)} is the set of predecessors
of i with respect to σ including i , and
(i , σ) = {j ∈ N : σ−1(j) < σ−1(i)} is the set of predecessors of i
with respect to σ excluding i .

The Shapley value φ(v) of a game (N, v) is then defined as the
average of marginal vectors over all |N|! possible orders in ΣN

φi (v) =
∑
σ∈ΣN

mσ
i (v)

|N|!
for all i ∈ N. (1)



Given a (communication) network 〈N,E 〉 and a TU-game (N, v),
following the approach in [9], we use the structure of an
interaction network to define a new game (N,w v

E ), where the value
w v
E (S) of a coalition S ⊆ N equals the sum of the values assigned

by v to the connected components of the network restricted to this
coalition S . The game w v

E is called the graph-restricted game.
graph-restricted game (N,w v

E ). Formally,

w v
E (S) =

∑
T∈CES

v(T ) (2)

for each S ∈ 2N \ {∅}, where ES = {e ∈ E |e ⊆ S} is the set of
edges with vertices in S and CES

is the set of all the connected
components in 〈S ,ES〉, and with the convention w v

E (∅) = 0. The
Shapley value of game w v

E is known as the Myerson value [9] of
the communication situation 〈N, v ,E 〉 and denoted by µ(v ,E ).



The Myerson value

Consider the Myerson value of a communication situation
〈N, v ,E 〉, where v is a symmetric game, i.e. v(S) = f (s) for each
S ⊆ V , S 6= ∅, where s is the cardinality of S , and the function
f : {1, . . . , |N|} → R satisfies f (0) = 0.

Imposing v as symmetric, it can be checked that all the desiderata
d .1, . . . , d .7 are satisfied by the Myerson value µ(v ,E ). Then the
Myerson value of a communication situation with symmetric game
can be considered a centrality measure, but using more information
then the one included in the network.



An example

Consider the meeting game defined by v(S) = f (s) = 2s − s − 1,
where coalition receives a unit for each possible meeting among
two or more of its members, corresponding to the number of
subsets of S with cardinality at least two, and the following
communication network:
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The meeting game with N = {1, 2, 3, 4} is such that v(i) = 0,
v(i , j) = 1, v(i , j , k) = 4, v(N) = 11.



Now, consider the graph-restricted game. Take for instance
coalition S = {1, 3}: node 1 is not connected to 3 in 〈S ,ES〉; so,
w v
E (1, 3) = v(1) + v(3) = 0. The graph-restricted game (N,w v

E ) is
such that w v

E (3, 4) = w v
E (2, 4) = w v

E (2, 3) = w v
E (1, 2) = 1,

w v
E (2, 3, 4) = w v

E (1, 2, 4) = w v
E (1, 2, 3) = 4, w v

E (1, 3, 4) = 1,
w v
E (1, 2, 3, 4) = 11 and w v

E (S) = 0 for all the remaining coalitions.

The Myerson value is

µ(v ,E ) = ( 28
12 ,

44
12 ,

30
12 ,

30
12 ).

Note that node 2 receives the highest value centrality: his
contribution to form conferences is in fact the highest. Note also
that nodes 3 and 4 receive the same amount of centrality, as
expected, since they are symmetric in the game. In this example,
the Myerson value preserves the ranking of nodes provided by the
classical measures of centrality like degree, closeness and
eigenvector. However, the gap between node 1 and 3, or between 1
and 4, according to the Myerson value is quite small.



Green for ICT

The carbon footprint of Information and Communication
Technologies (ICT) represents today up to 10% of the global CO2
emissions, according do different estimations

Among the main ICT sectors, 37% of the total emissions are due
to telecommunication infrastructures and their devices, while data
centers and user devices are responsible for the remaining part

ICT itself represents a strong contribution to the environmental
impact of human activities, and is growing really fast:
- Same footprint of the airplane transports, but with higher
growing rate.



Green for ICT: A Hot Topic

Power consumption of networking devices scales with the installed
capacity, rather than the current load.

In turn, devices are underutilized, especially during off-peak hours
when traffic is low.

This represents a clear opportunity for saving energy, since many
resources (i.e., routers and links) are powered on without being
fully utilized, while a carefully selected subset of them can be
switched off or put into sleep mode without affecting the level of
Quality of Service (QoS) offered by the network.



Objectives

Adopting an energy-aware routing approach in a backbone
network, keeping into account the criticality of devices in the
considered network scenario.

Proposing criticality metric accounting for:
(i) the network topology, and the importance of the devices in
keeping the network connectivity,
(ii) the amount of traffic that the devices are routing, and
(iii) different network configurations, corresponding to devices
being turned off to save energy



Resource consolidation

The problem of resource consolidation [4] may be formalized as an
optimization problem, where the objective is the minimization of
the total network power consumption, and constraints include the
classical connectivity constraints, and QoS constraints.

The main limitation of the resource consolidation problem is the
fact that the set of devices to be switched off to save energy is
chosen on the basis of the sole energy costs, and does not take
into account the “importance” of devices in the network scenario.



Device ranking
Classical measure have been used in the literature for ranking
network devices, looking to the network topology or to the traffic
volume passing through the network element.

The most widely used topology based rankings are:
The Degree centrality is defined as the number of links connected
to each node.
The Betweenness centrality represents the number of shortest
paths in which a node participates.
The Closeness centrality gives the average distance between a node
and all the other ones, in which the more critical nodes are the
ones with the lowest closeness centrality.
Lastly, the Eigenvector centrality corresponds to the influence of a
node in the network by taking into account the importance level of
its neighbours.

The traffic volume based rankings solely takes into consideration
the amount of traffic that is routed by the network elements.



Green Game

We model the resource consolidation problem as a cooperative
Transferable Utility Game (TU-Game). This game, namely the
G-Game, takes as its only inputs the network topology, i.e., the set
of links and devices, and the traffic matrix, i.e., the amount of
traffic routed by the network between each pair of devices.

The Shapley value of a G-Game defines a joint topology-aware and
traffic-aware ranking of the network devices, that can profitably be
used to drive the resource consolidation process.



Ingredients of a G-Game

A backbone network is represented by a graph G = 〈N,E 〉, where
the set of vertices or nodes N represent the interconnection nodes
(routers, switches, etc.), and the set of edges E represents the set
of communication links between pairs of nodes.

The load imposed to the network, seen as a whole, is defined by a
traffic matrix, T = (ts,d)s,d∈N , in which an element ts,d represents
the volume of traffic entering the network through node s and
exiting through node d .



The Green game
We consider a coalitional game (N,w) such that for each S ⊆ N,
S 6= ∅ we have

w(S) =
∑

i ,j∈S,i 6=j

(ti ,j + tj ,i )cij(S)

, where

cij(S) =

{
1 if i and j are connected in G
0 otherwise.

(3)

for each S ⊆ N, S 6= ∅

Note that the game w can be seen as the restriction to the graph
G of the game (N, v) such that

v(S) =
∑

i ,j∈S ,i 6=j

(ti ,j + tj ,i )u{i ,j}(S),

where u{i ,j} is the unanimity game over {i , j}.



Example
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Suppose the traffic matrix is such that t1,3 = 10 (MBps) and
t1,4 = 5 (MBps) and all the other values of traffic within the
matrix are null.
The G-game (N,w) is then such that w(1, 2, 3) = 10,
w(1, 2, 4) = 5, w(1, 2, 3, 4) = 15 and V (S) = 0 for any other
coalition of N.
The G-game is the restriction to the graph of the game
v = u{1,3} + u{1,4} that is not a symmetric game.



Another example
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Suppose the traffic matrix is such that t1,2 = 50 (MBps) and all
the other values of traffic within the matrix are null.

The G-game (N,w) is then such that w = 50c1,2, that is
w(1, 2, 5) = w(1, 2, 3, 4) = w(1, 2, 3, 4, 5) = 50 and V (S) = 0 for
any other coalition of N.

Note that c1,2 is precisely the restriction to the graph of the
unanimity game u{1,2}, and can be decomposed in a sum of
unanimity games

c1,2 = u{1,2,5} + u{1,3,4,5} − u{1,2,3,4,5}.



More in general

Every game cij can be formulated using the formula

cij =

Kij∑
k=1

( ∑
p∈Pk (MG (i ,j))

(−1)k+1uπ(p)

)
where

- MG (i , j) is the set of all acyclic paths between i and j in G , and
Kij is its cardinality.

- for each k = 1, . . . ,Kij , Pk(MG (i , j)) is the set composed by all
combinations of the union of k paths in MG (i , j)

-uπ(p) is the unanimity game over the unanimity coalition
composed by nodes in the union of paths p.



“Augmented” paths

The formula introduced in the previous slide is computationally
quite expensive. First it needs the finding of all acyclic paths.

Luckily, some acyclic paths shall not be considered. Consider two
paths, p and q between i and j such that all nodes in p are also in
q. We say that q is an augmented path.

Nodes in q but not in p do not provide any alternative when a
node in p is switched off. Therefore they should not increase their
score for participating in path q.



Example of augmented path
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here the path (1, 2, 3, 4, 5) is an augmented path (w.r.t. the path
(1, 2, 4, 5)).

In fact using the formula we have that

c1,5 = u{1,2,3,4} + u{1,2,3,4,5} − u{1,2,3,4,5}

so the contribution of the augmented path disappears! Good news,
we have a smaller subset of paths to be considered.



Finding all valid paths

Computing the Shapley value is still computationally intensive.
First, for every non-null entry in the traffic matrix, ti ,j , we need to
find all valid (i.e., acyclic and non-augmented) paths from i to j .

To produce valid paths from a node i , the search visits the graph
by neighbours avoiding loops and augmented paths.

First, when a branch (i , i1, i2, . . . , in) is explored, the already visited
nodes i , i0, ..., in−1 cannot be visited again due to the loop-less
path constraint.

Second, the branch should also avoid neighbours of preceding
nodes, as this would otherwise lead to augmented paths.



Example

Node 9 has two neighbors: 21 and 10, but the exploration has to
skip node 10, as it is already a neighbour of node 1. The
exploration only needs to consider node 21, since (1, 8, 9, 10, 11,T )
is an augmented path with respect to (1, 10, 11,T ).



Shapley value of a G-game
A formula to calculate the Shapley value for the G-game:

φl(cij) =

{ ∑Kij

k=1

(∑
p∈Pk (MG (i ,j))

(−1)k+1

|π(p)|

)
if l belongs to p

0 otherwise.
(4)

Example:
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c1,2 = u{1,2,5} + u{1,2,3,4} − u{1,2,3,4,5}

φl(c1,2) = (
1

3
,

1

3
, 0, 0,

1

3
) + (

1

4
,

1

4
,

1

4
,

1

4
, 0)− (

1

5
,

1

5
,

1

5
,

1

5
,

1

5
)

= (
23

60
,

23

60
,

8

60
,

3

60
,

3

60
).



Computational problem

Even when only the limited set of valid paths are considered, the
Shapley value computation becomes intractable as the number of
paths grows: the formula requires indeed, for any non-null flow
between i and j , to consider all the possible combinations of the
Kij paths that have been found, hence 2Kij iterations per flow.

Note that every path brings a contribution inversely proportional to
its length to the Shapley value of each traversed node.

In addition, the use of very long paths (i.e., greater than the
network diameter) is rare in real networks, as they would only be
used in extreme cases when multiple link/node failures occur
simultaneously.

Hence, bounding the maximum path length to a value L greater
than the diameter would not affect the practical relevance of the
solution from a networking standpoint.



A realistic scenario



we consider the reference topology of an ISP participating in the
TIGER2 project (projects.celtic-initiative.org/tiger2/info.htm)

The light-shaded nodes (1 to 8) are access nodes, source and
destination of traffic requests, and can not be switched off.

The dark nodes (9 to 21) are transit nodes, performing only traffic
transport, and can be switched off.

Node T is the traffic collection point, providing access to the core
network and the big Internet, with whom nodes typically exchange
the majority of the traffic.





Reference network scenario

The power consumption Pi (in Watts) of a node, is assumed to be
related to its switching capability (in Mb/s), that in turns is
assumed to be twice the capacity of its entire set of connected
links.

Energy saving capability is evaluated with respect to the situation
in which all nodes are powered on (referred to as “Baseline”
configuration).

We compute the link load by routing the traffic matrix on the
resulting topology: in more detail, we use TOTEM [1] to perform
an optimization of the routing weights (using the IGP-WO
algorithm) and route the traffic enabling Equal Cost Multi Path
(ECMP).



Possible rankings

We compare all the classical centrality measures on the network
topology above.

We also compare the Shapley value of two different game (max
length=6 hops): (i) the G-Game with a uniform traffic matrix,
referred to as G-Game U-TM hereafter, that reflects only the
network topology and (ii) the full G-Game earlier defined, that
considers the actual traffic matrix.

Least Flow (LF) ranking has been proposed by [6], which ranks
devices on the basis of the amount of traffic they would route in
the baseline configuration.



G-game U-TM vs G-game



Possible rankings

LF and Shapley value produce singular rankings (i.e., that are not
correlated with any other).
Most topology-related rankings (Betweenness, Closeness, G-Game
U-TM) are similar (very high correlation) and are evaluated only
through the G-Game U-TM hereafter.
Degree and Eigenvalues also form a distinct family which is
omitted below as resulting less pertinent, and performing poorly.



Energy saving vs. QoS

To evaluate the pertinence of the different rankings, we select a set
of nodes that can be switched off by scanning the list sorted by
increasing criticality (i.e., safest first).

The algorithm examines each node in turn, by checking whether its
removal, in addition to nodes previously turned off, would prevent
the network from routing the whole traffic matrix (by means of a
linear program).

To evaluate the impact of this strategy on the reference network,
let us fix a limit of Noff = 3 off nodes, so that at most 25% of the
transit nodes can be switched off at the same time



Underlined values identify nodes that can be switched off such that
the network remains able to carry the traffic matrix. Bold values
identify the first three nodes that can be switched-off.



Resulting energy saving



Link utilization distributions

Notice that the GGame yield to excellent performances, as the link
distribution is roughly equivalent to the one of the baseline
configuration, where no node is switched off. Especially, maximum
link utilization does not increase under G-Game (with respect the
baseline configuration)



Extensions to Other Network Scenarios

we point out that different transmission technologies may require
power hungry devices (e.g.,. opto/electronics signal
regenerators/amplifiers) along communication links, which may
move a considerable share of the energy consumption from nodes
to links.

Then it may be interesting to apply a resource consolidation
procedure considering network links rather than nodes.

In this new setting, players would represent links, and coalitions
represent set of powered-on links, which are carrying traffic
requests.
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with respect to the path (1, 2, 4, 5), the path (1, 2, 3, 4, 5)
represents an augmented path for the node-level G-Game, as it is
not offering alternatives in case of node failures. When considering
links as players, instead, the path (1, 2, 3, 4, 5) represents a valid
alternative to (1, 2, 4, 5) in the case of link {2, 4} switch-off [3].
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